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A modification of the method of monotone operators is applied to the approxi- 
mate solution of the periodic problem for a nonlinear system of impulsive 
differential equations. 

1. INTRODUCTION 

While in recent years the mathematical theory of impulsive systems 
has undergone intensive research, many of its aspects remain undeveloped, 
due largely to difficulties related to phenomena of "beating," involving, 
e.g., a loss of  autonomy or a merging of solutions. 

The study of  the mathematical theory of impulsive systems was initiated 
by Mil 'man and Myshkis (1960). 

In the present paper we give a modification of the monotone-iterative 
method of  Lakshmikantham (Bernfield and Lakshmikantham, 1982; 
Deimling and Lakshmikantham, 1980; Du and Lakshmikantham, 1982; 
Lakshmikantham and Leela, 1984, Lakshmikantham et al., 1981; 
Lakshmikantham and Vatsala, 1981; Vatsala, 1983) for the periodic problem 
for nonlinear systems of  impulsive differential equations. Nonlinear periodic 
roblems for impulsive systems also have been investigated by other methods 
(Perestyuk and Shovkoplyas, 1973, Samoilenko and Perestyuk, 1982; 
Hristova and Bainov, 1986). 
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2. S T A T E M E N T  OF T H E  P R O B L E M  

Consider  the per iodic  p rob l em for  the impuls ive  system 

~c =f ( t ,  x) for  t # t, 

Axi ~=,, = I , (x(6))  (1) 

x(O)=x(T) 

w h e r e x ~ R n ,  f:[O, T ] x R " ~ R " ,  I ~ : R n ~ R "  ( i =  1 ,p) ,  ti~ (0, T) ( i =  l , p )  
are fixed points  such that  t~+~ > ti (i = 1, p - 1), Axl,=t, = x(ti + O) - x(6 - 0). 

We shall say that  the funct ion v:[O, T]-~ R"  belongs to the set f~ if: 
1. The  funct ion v(t)  is piecewise cont inuous  with points  o f  discon- 

t inuity of  the first type at the points  6, i -- 1 ,p .  
2. v(t,) = v ( t , - 0 ) .  

3. The  funct ion v(t)  is cont inuously  differentiable for  t # 6, i = 1, p. 
4. There  exists the derivat ive 13(6)= t 3 ( 6 - 0 )  (i = 1 ,p) .  
Define the set 

D ( v , w ) = { u ~ 1 2 : v ( t ) < - u ( t ) ~ w ( t )  for  t e [ 0 ,  T])  

where v, w ~ fL 

Definition 1. The funct ion v( t )~  ~ is called a lower (upper)  solut ion 
of  per iodic  p rob l em (1) if  

b(t)<-(>-)f(t ,  v) for  t #  ti 

Av[t=,,<---( >- )Ii(v(ti)) 

v(O)<-(~)v(T) 

Let v0, Wo c 12 be respectively,  lower and  uppe r  solutions o f  the per iodic  
p rob lem (1). 

Definition 2. The funct ion v c D(vo,  Wo) is called a minimal  (maximal )  
solut ion of  per iodic  p rob l em (1) in D(vo, Wo) if  it is a solut ion of  (1) 
and for  any  other  solut ion u c D(uo, Wo) of  p rob lem (1) the inequal i ty  
v(t) <- (>-)u(t) holds for  t c [0, T]. 

Let u, v ~ R " ,  u = ( u l , u 2 , . . . , u n ) ,  v = ( v l , v 2 , . . . , v ~ ) .  We shall say 
that  u _< v, if  ui -< vi for  i = 1, n. 

Let n ~ 2. To every in teger j  ~ 1, n we put  in cor respondence  two posit ive 
integers pj and qj such that  pj + qj = n - 1. Then  each e lement  x ~ R ~ (n -> 2) 
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can be represented in the form 

X~.~_(Xj,[X]pj ,[X]qj)=I(Xb.. . ,Xj , .~ for pj>j ,  

( (x l ,  .,xpj, xpj+l, . . .  , x ~ , . . . , x , )  for pj-<j. 

qj+l 

In terms of the notations introduced, problem (1) for n > 2 can be 
written in the form 

2j=fj(t, xj,[X]p,,[x]q,) for t # t ,  

Axjlt:t ~ = Iij(xj( ti), [x( t,)]p,, [x( ti)]qj) (2) 

xj(O)= xj( T), j =  l, n 

Definition 3. The functions w, v e 12 are called a couple of upper and 
lower quasisolutions of periodic problem (2) for n -> 2 if 

Oj<-fj(t, vj,[v]p,,[w]q,) for tysti 

<- Iij( vj( ti), [ v( ti) ]pj, [ w( t,) ]qj) (3) 

vj(o)<_vj(T), j = l , n  

and 

r162 Wj,[W]pj,[V]qj) for  t # t i  

A wj] t=r, >>- Iij( Wj( ti), [ W( t,) ]pj, [ V( ti) ]qj) (4) 

wj(O)>-wj(T), j = l , n  

Definition 4. The functions v, w ~ ~ are called a couple of quasisol- 
utions of the periodic problem (2) for n - 2 if the relations (3) and (4) are 
equalities. 

Let v0, w0cl l  be a couple of lower and upper quasisolutions of 
problem (2). 

Definition 5. The functions v, w ~ fl are called a couple of  minimal and 
maximal quasisolutions of periodic problem (2) in D(uo, wo) if they are a 
couple of quasisolutions of (2) and for any couple of quasisolutions ul, u2 
12 of problem (2) the inequalities v(t)<- u~(t)<- w(t) and v(t)<- u2(t)<- w(t) 
hold for t ~ [0, T]. 

Definition 6. The function f :  [0, T] x R" --> R" (n - 2) is called mixed 
quasimonotone if for j =  1, n the function fj(t, uj, [u]p,, [u]qj) is monotone 
nondecreasing with respect to [U]pj and monotone nonincreasing with 
respect to [u]qj. 
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3 .  M A I N  R E S U L T S  

We shall consider separately the cases when problem (1) is a periodic 
problem for a scalar impulsive equation and when problem (1) is a periodic 
problem for a system of n (n-> 2) impulsive equations. 

Case L Let n = 1. 

Lemma 1. Let the function m : [0, T] --> R, m ~ fl, satisfy the inequalities 

rh(t) < - - M m ( t )  for t ~ t~ 

Am[t=,~ -< -Lim( t , )  

m(O)<-m(T) 

where M > 0 ,  0 < L i < l  ( i =  1,p).  
Then, for t~  [0, T] the inequality re(t)<-0 holds. 

Proof Suppose that this is not true, i.e., there exists a point r such 
that re(r)> 0. Introduce the notation 

e =  sup re(t) 
t~[0,T] 

In virtue of the assumption, the inequality e > 0 holds. 
Consider the following three cases: 

Case I. Let a point ~: ~ [0, T] exist, ~ ~ ti (i = 1, p), such that rn(~=) = e. 
I f  ~: e (0, T], then the following inequalities hold: 

m ( ~ - h ) < - m ( ~ )  

0 < - m(~) <- -Mm(,~)  = - M e  < 0 

The contradiction obtained shows that in this case the assumption is 
not true. 

I f  s r = 0 ,  then the inequality r e ( T )  --- m(0) = e holds. Hence re(T) = e. 
Then the inequalities m(T)  - 0 and 0 <- re(T) <- - M e  < 0 hold. 

The contradiction obtained shows that in this case the assumption is 
not true. 

Case 2. Let a positive integer K c 1, p exist such that m(tk)> re(t) for 
t e [0, T]. Then there exists a point r ~ (0, T), t:c-1 < r < tk, such that m (r)  > 0 
and r e ( r ) - 0 .  Moreover, the inequalities 0 <- r e ( r ) < - - M m ( r ) <  0 hold. 

The contradiction obtained shows that in this case the assumption is 
not true. 

Case 3. Let an integer k~  1,p exist such that rn( tk+O)>O and m(tk+ 
0 ) >  re(t) for t c  [0, T]. Then the following inequalities hold: 

0 < m(tk +0)  <-- (1 -- Lk)m(tk) 
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o r  

m(tk)>0 

Hence 

0 < m(tk + O) -- m(tk) < --Lkm(tk) < 0 

The contradiction obtained shows that in this case the assumption is 
not true. 

This completes the proof  of Lemma 1. 

Theorem 1. Let the following conditions hold: 
1. The functions Vo, Wo ~ f~ are respectively, lower and upper solutions 

of problem (1). 
2. The function f :  [0, T] x R ~ R is continuous and for Vo(t) <- v <- u <- 

Wo(t) the following inequality holds: 

f ( t ,  u ) - f ( t ,  v ) > - - M ( u - v ) ,  t~[0 ,  T] 

where M = const > 0. 
3. The functions Ii : R ~ R for Vo(t) - v -< u -< Wo(t) satisfy the condition 

I i ( u ) - L ( v ) > - - L i ( u - v ) ,  i = l , p  

where 0 < L~ < 1. 
Then there exist sequences {v(k)(t)}o and { w(k)(t)}~ that are uniformly 

convergent in the interval [0, T], and their limits v(t)--limk~o~ V(k~(t) and 
w(t) = limk_,o~ w(k)(t) are, respectively, minimal and maximal solutions of 
the periodic problem (1) in D(vo, Wo). 

Proof. For any function */c D consider the periodic problem 

f ~ = - M u + f ( t ,  ~)+M*/ for t ~  6 

Au[ t=t~ = -Liu(t ,)  + Ii(*/(t,)) + Li*/(ti) (5) 

u(O) = u(T) 

The linear periodic problem (5) has a solution that is unique. 
Define the mapping A by the formula A,  = u, where u(t) is the unique 

solution of  problem (5). It is easily verified that the operator A satisfies the 
following conditions: 

(a) Vo<-Avo and Wo>-Awo. 
(b) The operator A is monotone increasing in D(vo, Wo), i.e. for */1, */2 

D(vo, w0), */1 <- */2, the inequality A*/1 -< A*/2 holds. 
Define the sequences {v(k)(t)}o and {w(k)(t)}o by the equalities 

v(~ w(~ = Wo, v(k+~):Av (k) ' w ( k + U : A w  (k) ' k>O, 
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and obtain that for t ~ [0, T] the following inequalities hold: 

V(~ v(1)(t) __< �9 . . < v(k)(t) < . . .  < w(k)(t) < . . .  << w(l)(t) _< w(O)(t) 

From the last inequalities it follows that the sequences {v(k)(t)}~ and 
{w(k)(t)}~ are uniformly convergent in [0, T] and their limits v ( t ) =  
limk-,~ v(k)(t) and w(t )  = limk_,~ W(k)(t) are solutions of the periodic prob- 
lem (1). 

Let u ~ D(vo,  Wo) be an arbitrary solution of  (1). We shall show that 
the inequality v( t )  < - u ( t )  < w( t )  holds for t~ [0, T]. In fact, for some k > 0  
let the inequalities v(k)(t) < u( t )  <-- w(k)(t) hold for t c [0, T]. Set p( t )  = 
v(k+l)(t) - u (t). The function p( t )  satisfies the following impulsive differen- 
tial inequality: 

p( t )  = f ( t ,  v ( k ) ( t ) ) - - M ( v ( k + l ) ( t ) -  v (k) ( t ) ) - - f ( t ,  U) 

< _ M ( u - - v ( k ) ) - - M ( v ( k + I ) - - v ( k ) ) = M p ( t )  for t # t  i 

Apl t=ti <- Li( u( ti) - v(k)( ti) ) -- L i ( 1 ) ( k + l ) (  t i)  --  l )(k)(  ti) ) 

= -L ip ( t i )  

with a periodic condition 

p(O) =p(r). 

By Lemma 1 the inequality p( t )<-0  holds; hence 

v(k+l)<--u(t) for t c [ 0 ,  T]. 

It is obtained in an analogous way that u( t )  <- W~k+l)(t) for t ~ [0, T]. 
By induction it is proved that for l>_ k the inequalities v~(t)<-u( t )  < - 

w(n(t)  hold for t c  [0, T], which shows that v( t )  and w(t )  are a minimal 
and maximal solutions of problem (1) in D(vo,  Wo). 

This completes the proof  of Theorem 1. 

Remark  I. If problem (1) has a unique solution u( t )  ~ D(vo,  wo) and 
the conditions of Theorem 1 hold, then by Theorem 1 there exist two 
sequences of functions tending uniformly from the left and from the right 
tO this solution. 

Case II. Let n -> 2. 

Theorem 2. Let the following conditions be fulfilled: 
1. The functions vo(t) and Wo(t) are a couple of  lower and upper 

quasisolutions of periodic problem (2) and vo(t)<-Wo(t) for t r [0, T]. 
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2. The function f :  [0, T] x R" ~ R" (n - 2) is continuous and mixed 
quasimonotone in [0, T] x D(vo, Wo). 

3. The functions I~ : R n ~ R" (n >- 2) are mixed quasimonotone. 
4. For u , v ~ R  n such that Vo(t)<-u<-v<-wo(t) for t~[0,  T], the 

inequalities 

fat, v~, [uL~, [u]q)-fAt, uj, [u],,,, [uL)-> -Mj(vj- u~) 
I,j( vj, [ u ]vj, [U]q) -  Io( uj, [ u ]vj, [U]q)~ - Lij( vj -u j )  

hold, where Mj -> 0, 0 < Lij < 1, i = 1, p, j = 1, n. 
Then the following assertions are valid: 
1. There exist monotone sequences {v(k)(t)}o and {w(k)(t)}~ that are 

uniformly convergent in [0, T] and their limits v( t) =limk_,o~ v(k)(t) and 
w(t) = limk_,o~ w(k)(t) are a couple of minimal and maximal quasisolutions 
of problem (2) in D(vo, wo). 

2. If  the function u c D(vo, Wo) is a solution of problem (2), then for 
t 6 [0, T] the following double inequality holds: v(t) <- u(t) <- w(t). 

Proof Proof of assertion 1. Forany couple of functions r/,/z ~ D(vo, Wo) 
consider the periodic problem 

zij=-Mljuj+fj(t, r/j,[r/]pj,[Ix]o)+ Mjr/j for t #  ti 

Auj[~=,~=-Lijuj(t~)+ Ig(r/j(h),[*?(ti)]pj,[lz(ti)]qj)+ L~Tj(t~) (6) 

uj(O) = uj( r) ,  j = 1, n 

Problem (6) has a unique solution for any fixed couple of functions 
r/,/~ ~ D(vo, Wo), which is represented by the formula 

fo uj(t) = uj(O) e-M~+ {fj(s, r/j, [r/]pj, [/X]q) 

+ Mjr/j(s)} e ~  ('-t) ds 

+ ~ e~("-*){Lur/j(t~)+Io(rlj(t~),[r/(ti)]pj,[Ix(t,)]p)} (7) 
0 < / i < r  

where 

{;o T uj(O)=(e~T--1)  - '  [f j(s,r/ j(s) ,[r/(s)]v, ,[p.(s)]q)+Mjr//s)]e%'ds 

+ ~', eM/~[Iu(rlj(ti), [r/(ti)]vj, [p.(t,)]q)+Lijr/j(ti)]l 
O<ti<t J 

Define the mapping A: D(vo, Wo)• D(vo, Wo)-->R" by means of the 
equality A(r/, /x)= u, where u = ( u l , u 2 , . . . , u ~ )  and uj(t) is the unique 
solution of problem (6) for the couple of functions r/ and/x what is given 
by formula (7). 
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We shall prove that Vo<-A(vo, wo). Introduce the notation v (1)= 
A(vo, Wo), where v (1)= (v~', v~l) , . . . ,  v~ 1)) is the unique solution of problem 
(6) for ~7 = Uo and /z  = Wo. 

Set p(t )  = Vo(t)-v(1)(t) .  Then the following inequalities hold: 

pj(t) <- -)VI:pj(t) for t ~ ti 

Ap:I,=,, <-- -Lupj(  6) 

pj(O) <- pj(T)  

By Lemma 1, pj(t)<-O, t~[0,  T], or Vo<-A(vo, Wo). 
It is proved in an analogous way that Wo > - A(wo, Vo). 
Let ~,t~ ~ D(vo, Wo) be such that ~-</z. Set u( l)=A(~,/~)  and u (2)= 

A(tt, n). Introduce the notation pj ( t ) = u ~ l ) ( t ) - u ) 2 ) ( t ) , j ~ 1, n . From condi- 
tions 1, 2, and 4 of Theorem 2 we obtain the following impulsive differential 
inequalities 

/~j(t) < Mj(ttj _ rig) _ -(1) M:uj-uJ2>)+Mj(nj ~j) 
= - M j p j ( t ) ,  for t ~  ti (8) 

apjl,=,,<- -Laps(t ,)  

with a periodic condition 

pj(0) =pj(T),  j = 1, n 

By Lemma 1, the inequality p:(O) <- O, j = 1, n, holds. Hence, for ~7,/z 
D(vo, wo), rl <- lz, the inequality A(~7, p.) -< A(/x, ~/) holds. 

Define the sequences {v(k)(t)}o and {w(k)(t)}o by the equalities v (~ 
v0, w (~ Wo, v(k+l)= A ( v  (k), w(k)), w(k+l)= A ( w  (k), v(k)), k >--O. 

Then, in view of What was proved above, the inequalities 

v(~ t) < v(l)( t) <_. . .  < v(k)( t) <_. . .  < w(k)( t) < . . .  <_ w(~ t) 

hold for t ~ [0, T]. 
The above inequalities show that the sequences {v(k)(t)}o and 

{w(k)(t)}~ are uniformly convergent in [0, T], and their limits v ( t )=  
l imk.~ V(k)(t) and w( t )=  l imk.~ w(k)(t) are a couple of quasisolutions of 
problem (2) in D(vo, Wo). 

We shall show that (v, w) are a couple of maximal and minimal 
quasisolutions of (2) in D(vo, Wo). Let Ul, u2~ D(vo, Wo) be a couple of 
quasisolutions of problem (2). Then there exists a positive integer k such that 

v(k-1) ( t )<ul ( t )<w(k-1) ( t ) ,  v(k-1)( t )<u2(t )<w(k-1)( t )  

for t~[0,  T]. We set p( t )=v(k ) ( t ) - -Ul ( t ) .  The function p(t)  satisfies 
inequalities (8) and by Lemma 1, pj(t)<-O, j =  1, n, i.e., vJg)(t) <- u~j(t) for 
t 6 [ O , T ] , j = l , n .  



Solving Impulsive Differential Equations 765 

It is analogously proved that v(k)(t) ~ U2(I ) and w(k)(t) ~ u~(t)(i = 1, 2) 
for t e [0, T]. 

By induction we obtain that for any positive integer k the inequalities 
v(k)(t) <- ul(t) <- w(k)(t) and v <k)< - u2(t) <- wr hold for t e [0, T]. 

Hence the functions v and w are a couple of minimal and maximal 
quasisolutions of problem (2) in D(vo, Wo). 

Proof of assertion 2. Let u ~ D(vo, Wo) be a solution of problem (2). 
Then the couple (u, u) can be considered as a couple of quasisolutions of 
problem (2) in D(vo, wo). By assertion 1 of Theorem 2, the inequality 
v(t)<-u(t)<-w(t) holds for t e l 0 ,  T]. 

This completes the proof of Theorem 2. [] 

Example 1. Consider the periodic problem 

Xl ---~ Xl -~- X2 for t ~ tl 

X2 ~- Xl - -  2X2 
(9) 

A x i  I t= q = Xi i = 1 ,  2 

x,(O) = x , ( r )  

where 0 < t~ < T. 
Define the functions v, w:[0, T ] ~ R  2 by the equalities v=  (v~, v2), 

w = ( w l ,  w2), vi(t)~O, ( i=  1,2), 

~e~ for t e [0 ,  t,] 
wl(t)=[e(r+q-')(er-1)- for t o ( h ,  T] 

Je2(q-t)(e2T--1) for te[O, tl] 

w2(t)=[e2(r+'l-~ for te ( t l ,  T] 

Choose the numbers pj = O, t b = 1, j = 1, 2, and introduce the notations 

J'(Xl, Y2) for j = 1 
(x j, Ix]p j, [Y]qj) 

[(Yl,X2) for j = 2  

It is easily verified that the couple of functions (w, v) are a couple 
of lower and upper quasisolutions of problem (9) and v~(t)<-w~(t) for 
t e [0 ,  T], i =  1,2. 

A straightforward verification shows that the conditions of Theorem 2 
are satisfied for Ml = 1, M2=2,  Lll = L12 =�89 

By Theorem 2 we can construct the couple of minimal and maximal 
quasisolutions of problem (9) as limits of sequences of functions {v(k)(t)}~ 
and {W(k)(t)}o where vl~ wl~ = wi(t), i= 1,2. 
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For funct ions  t~(1)(t) and  w(1)(t), by formula  (7) we obta in  

~(eZT--1) e 2 q - t ( e r - q + e - q - e  -') for t ~ [ 0 ,  q]  

v~l)(t)=[(e2-r--l) e2q- '+T(eT-q+e-q-eT- t )  for t ~ ( q ,  T] 

~ ( e T + l ) - l ( e T - a ) e  r + ' ' - '  for t ~ [ 0 ,  h]  

V~21)(t)=[(eT+l)-~(er 1) e T +q- ' ( a+e T-e  r- ')  for t 6 ( t l ,  T] 

f eq - ' ( e  T-�89 for t ~ [ 0 ,  q]  
w~l)(t)= [er+t'-t(e2T-�89 for t ~ ( t l ,  T] 

[e2("-')(e2r-�89 for t ~ [ 0 ,  t,] 

w~l)(t) = [e2(r+q-*)(e2T--�89 for t~  ( q ,  T] 

By Theorem 2 for t c [0, T] the inequal i t ies  

vl')(t)<-ui(t)<--wlX)(t) ( i =  1,2) 

hold, where (u~(t), u2(t)) is a solut ion of p rob lem (9). 
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